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We present here experimental evidence of a mechanism of a steady-chemical pattern formation called
“flow-and-diffusion structures” �FDS�. Experiments were performed using the photosensitive chlorine dioxide-
iodine-malonic acid reaction, where the differential diffusion can be chemically controlled. Using the analogy
between an advection boundary and a moving boundary, we obtain the formation of spatially periodic steady
patterns, which matches all the previously theoretical predictions for FDS patterns. Numerical simulations are
also reported in agreement with the experimental results.
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The study of pattern formation in reaction-diffusion �RD�
systems is a very active area of research. In response to
Turing’s work �1�, many studies involving chemical patterns
have been recently performed. Today Turing’s scenario lies
at the heart of many applications attempting to explain pat-
terns in fish skin, mammalian coat markings, phyllotaxis, and
so on �2–8�.

Recent studies have revealed the existence of unexplored
mechanisms for pattern formation in reaction-diffusion-
advection �RDA� systems. A differential flow �different flow
velocities of activator and inhibitor� was shown to have a
similar destabilizing effect as differential diffusion �different
rate of diffusion for different species� has in the Turing case
�9–12�.

On the other hand, a mechanism for the formation of
steady patterns has been reported recently by Menzinger and
co-workers, called flow-distributed oscillations �FDO�
�13–15�. This apparently simple kinematic mechanism in-
volves only advection �directional flow� and Hopf oscilla-
tions.

Flow-and-diffusion structures �FDS� appear as a generali-
zation of the kinematic FDO mechanism to systems with
differential flow and differential diffusion �13,16�.

The importance of these mechanisms centers on the idea
that growth, flow of cells, and gene oscillations are com-
monly present in a large number of biological processes dur-
ing the first days of embryo development �8,17–19�. So the
FDO and FDS mechanism may be a good candidate to ex-
plain some of the cell differentiation processes, as axial seg-
mentation, skin patterning, or somitogenesis �20�.

Some of the main theoretical characteristics for the FDS
are as follows:

�i� FDS are steady patterns which are periodic in the di-
rection of flow.

�ii� There is a lower limit value for the flow velocity,
below which FDS patterns are not produced �absolute un-
stable regime� �21�.

�iii� There is no upper limit for the formation of FDS in

the convective unstable regime �that is, there is no upper
limit for the flow velocity�.

�iv� FDS can appear in systems with differential flow and
differential diffusion.

�v� The wavelength is linearly dependent on the velocity
of flow.

�vi� FDS are very robust, with a wide domain in the phase
space, compared with other steady pattern formation sys-
tems, such as Turing patterns.

In this paper we present conclusive experimental verifica-
tion of FDS patterns in a chemical medium. We use the simi-
larity between a moving boundary and a boundary of advec-
tion �already used in Ref. �22��. A system with fixed domains
and a boundary of advection is equivalent to a sufficiently
large medium with a moving boundary, if it is observed from
a reference frame co-moving with the boundary �in other
words, the observer on top of a moving boundary sees an
effective flow through it�. Mathematically, both systems are
identical when a change in the reference frame is introduced
into the equations.

This equivalence allows us to perform experiments in a
gel system without turbulence. Another advantage of having
an effective flow created by the moving boundary, instead of
a real flow, is that no hydrodynamical instability can distort
the patterns, even in the case of high velocities.

We have used the photosensitive chlorine dioxide-iodine-
malonic acid �CDIMA� reaction �23–25�, where the differ-
ence between diffusion coefficients can be easily controlled
chemically. In addition, light intensity can be used as a con-
trol parameter that allows transitions between the different
regimes.

We have designed an experiment in which an oscillatory
domain grows in a given direction with a well-controlled
velocity. This is due to the displacement of a frontier sepa-
rating an illuminated region from a shadowed domain �see
Fig. 1�. In this way, the role of the feeding boundary is
played here by the moving boundary of illumination. Struc-
tures that are steady in the flow system are expected to move
with the velocity of the boundary in the growing system.
Owing to this equivalence, we shall present all results in the
co-moving reference frame �unless specified� in order to
maintain the analogy with the reaction-diffusion-advection*Electronic address: miguez@brandeis.edu

PHYSICAL REVIEW E 73, 025201�R� �2006�

RAPID COMMUNICATIONS

1539-3755/2006/73�2�/025201�4�/$23.00 ©2006 The American Physical Society025201-1

http://dx.doi.org/10.1103/PhysRevE.73.025201


system. Experiments were performed in a rectangular me-
dium, where all the stationary boundaries were fixed by high
light intensity, as illustrated in Fig. 1.

Experiments were carried out in a one-sided continuously
fed unstirred tank reactor �CFUR� �26–28� maintained at
�4±0.5 °C�. Structures are formed in a circular agarose gel
layer �2% agarose, thickness 0.3 mm, diameter 20 mm�. Be-
tween the gel and the feeding chamber, we put an Anapore
membrane �Whatman, pore size 0.2 mm, impregnated with
1% agarose� and a nitrocelulose membrane �Schleicher and
Schuell, pore size 0.45 mm�. The reagents of the CDIMA
reaction were pumped into a continuously stirred tank reac-
tor �CSTR� for mixing. Initial input concentrations in the
CSTR were �I2�=0.45 mM, �malonic acid�=1.1 mM,
�ClO2�=0.18 mM, �H2SO4�=10 mM, �PVA�=1 g/ l.

Poly�vilyl�alcohol �PVA� is an indicator of the activator
concentration, so it allows us to observe the patterns. PVA
also reduces the diffusion coefficient of the activator with
respect to the inhibitor. By changing the PVA concentration,
we can vary the differential diffusion between activator and
inhibitor, going from Hopf oscillations �low differential dif-
fusion� to Turing patterns �high differential diffusion�. For
experimental purposes, the PVA concentration was set up to
situate the system in oscillatory behavior, but with nonzero
differential diffusion, matching the requirements for the FDS
production.

The moving boundary was produced by focusing a mov-
ing image from a video projector �Hitachi, CP-X327� onto the
gel. This allows us to impose a constant controlled velocity
for the boundary of the decreasing illuminated zone �no pat-
tern in the steady-state regime� at the expense of increasing
the nonilluminated zone �allowing pattern formation in the
oscillatory regime�. Images were recorded by a charge-
coupled device �CCD� camera.

Under these circumstances, the system exhibits phase
waves of oscillation in the nonilluminated area. The period
of oscillation is To=0.74±0.05 min and the spontaneous
wavelength is �o=1.22±0.08 mm. In the illuminated area,
the external light intensity is sufficiently high to situate the
system in the steady-state regime.

In the absolute unstable regime, the pattern is composed
of waves arising at the moving boundary and propagating in
the opposite direction of the boundary velocity �see Fig.
2�a��. In this space-time plot, the slope of the structures is the
inverse of the velocity of the waves. As we increased the
speed of the boundary, the phase waves slow down in

the moving reference frame. The period of forming a new
wave �T0=0.74±0.05 min� is independent of the boundary
velocity.

If the velocity is increased, once the convective unstable
regime is reached, waves became steady, forming a steady
chemical structure that is spatially periodic in the direction of
the velocity �see Fig. 2�b��. Sometimes, a slow drift can be
present leading to nonstrict steady patterns, maybe due to
transient states. In general, the pattern remains steady, as can
be observed comparing with the dashed vertical line in Fig.
2�b�. In contrast to the case of lower velocities, the wave-
length of the pattern, �, is not fixed but depends on Vb via
�=T0Vb. Figure 3 shows this linear dependence in solid
agreement with the theoretical predictions �17�. These peri-
odic patterns induced by the effective flow created by the
moving boundary and reaction-diffusion are the theoretically
predicted flow-and-diffusion structures �17,30�. As the theory
predicts, increasing the value of the velocity shows the same
behavior, and there is no upper limit for the velocity in which

FIG. 1. Schematic of the experiment. The moving mask creates
a growing shadow domain where structures can develop. Instead of
the mask, a video projector was used, as described in the text.

FIG. 2. Experimental space-time plot for different velocities of
the boundary. The figure2 is a vertical array of experimental picture
lines periodically taken �each line is recorded perpendicular to the
moving boundary�. Figures1 are shown in the reference frame co-
moving with the boundary. Note that the feeding boundary is al-
ways at space=0 mm. �a� velocity below FDS threshold �Vb

=1.02 mm/min�. �b� FDS �Vb=7.09±0.92 mm/min�.

FIG. 3. Dependence of the wavelength of the FDS with the
velocity of the boundary Vb. Wavelength and velocity are normal-
ized in order to compare experimental results �represented by the �
symbol�, where �0=1.22±0.08 mm, V0=1.64±0.08 mm/min, nu-
merical ���, and theoretical predictions �dashed line� �=T0Vb.
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FDS will not form. FDS were found for a wide range of
values in the parameter space. In fact, when the values of the
parameters bring the system into the oscillatory domain, and
the velocity of the moving boundary is larger than the veloc-
ity of normal autowaves, FDS are always produced.

The two-dimensional �2D� view of the experimental FDS
in the laboratory reference frame is shown in Fig. 4. The
spatial pattern is composed of stripes ordered parallel to the
moving boundary. The stripes remain steady close to the
boundary, where its influence is stronger. Far from the mov-
ing boundary �typically 7 or 8 wavelengths� the dynamic of
the system is dominated by the Hopf instability, thus sponta-
neous oscillations and waves with V0 and �0 occur. The
study of the experimental two-dimensional FDS patterns is
ongoing.

Numerical simulations have also been performed using
the Lengyel-Epstein model for the CDIMA reaction
�23,25,29�. Our model equations are

�tu = a − cu − 4
uv

1 + u2 − � + �u , �1�

�tv = ��cu −
uv

1 + u2 + � + d�v� . �2�

Here, u and v correspond to the the dimensionless con-
centrations of activator and inhibitor; a, c, and � are dimen-
sionless parameters proportional to other initial concentra-
tions and rate constants, and d is the ratio of diffusion
coefficients of inhibitor and activator. The value � is propor-
tional to the concentration of the PVA. The effect of external
illumination is introduced through the � terms. In this par-
ticular case, � is in the form of a steplike function traveling
through the medium with constant velocity Vb in the form:
�=�0 when x�vbt and �=�max when x�vbt.

To mimic the experimental conditions, parameters for the
simulations were set equal to a=22, �=5, c=1.3, and d
=1.07. �0=2 corresponds to the low-light intensity case,
with the solution of the system being inside the Hopf do-
main, whereas �max=4 corresponds to the high-light inten-

sity case, with the solution decaying to the steady state. A
phase diagram is shown in Fig. 5.

In addition, to validate the analogy between the feeding
and moving boundary, numerical simulations were per-
formed using the same model but with a boundary of con-
trolled and constant flow. We obtained identical results.

Figure 6 shows the numerical results obtained. In the ab-
solute unstable regime, waves propagate backwards �Fig.
6�a��, while in the convective unstable regime, FDS appear
stationary in the moving reference frame �Fig. 6�b��. In Fig.
3 we also plot the dependence of � vs Vb �in a dimensionless
form� showing perfect agreement with the experiments and
theory.

We have provided experimental evidence of the existence
of flow-and-diffusion structures. The photosensitive CDIMA
reaction in its oscillatory domain provides a good framework

FIG. 4. Snapshots from the experiment corresponding to Vb

=7.08±0.05 mm/min. The photographs are shown in the laboratory
reference frame. Size of each picture: 6	20 mm. Elapsed time
between photographs: 0.75 min.

FIG. 5. Three-dimensional phase diagram for the L-E model
with advection showing the different states for the parameters used.
FDS are stable inside the gray domain. The threshold velocity can
be identified as the surface of the gray area. Note that this threshold
increases with the difference between the diffusion coefficients
�proportional to ��. Dashed lines correspond to the numerical val-
ues chosen for the simulations.

FIG. 6. Numerical space-time plot for different velocities of the
boundary. Figure6s are shown in the comoving frame with the
boundary. Note that the feeding boundary is always at space
=0 mm. �a� Velocity below FDS threshold �Vb=2 s.u./ t.u.�. �b�
FDS �Vb=40 s.u./ t.u.�.
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of study, where differential diffusion can be chemically con-
trolled. Due to the FDS mechanism, the effective flow gen-
erated by the moving boundary of illumination induces
steady periodic patterns. Using a moving boundary of illu-
mination we produce a growing oscillatory medium, thus
ensuring no differential flow. The effective flow generates
new phenomena through the FDS pattern formation
mechanism. Structures formed are well controlled and con-
siderably more robust than the classical reaction-diffusion

patterns, which underscores the importance of this reaction-
diffusion-advection mechanism in natural pattern forming
processes.
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